PENROSE
En los años 70 Roger Penrose y Robert Ammann descubrieron de manera independiente las que se han llamado teselaciones de Penrose. Son teselaciones con estructura de cuasicristal. que no concuerdan consigo mismas al desplazarlas (se dicen no periódicas) y en las que cualquier trozo aparece infinitas veces. Algo complicado de leer pero espectacular para ver en la galería de estudios de Penrose en el 500px de parameter_… Pueden verse también en arquitectura y en geometría o generarse con el programa de Stephen Collins.
Entrada para la Edición 4.12310 del Carnaval de Matemáticas en el blog de @_mirandamolina_.

PENTAPÁJARO Pentapájaro: Dícese de la figura formada por 5 pájaros. Del griego penta = cinco, como pentagrama, pentatlón, pentágono o Pentateuco. De los griegos nos vienen la geometría de Euclides y los descubrimientos de Thales, Pitágoras y tantos otros. Y del griego nos queda la nomenclatura, como polí(muchos)gonos(ángulos), tetra(cuatro)edro(caras), de ahí tetris, hipo(debajo)tenusa(alargar), homo(misma)morfismo(forma) o  epi(sobre), endo(dentro), iso(igual) y auto(uno mismo). Y anti (contrario), hemi(mitad), micro(pequeño), mono(uno) y peri(alrededor de). Y usamos las ε, α, πδ, ΦΔ y, en Σuma, todo su αβeto. Foto Norbert Schipany.
Entrada para la Edición 4.12310 del Carnaval de Matemáticas en el blog de @_mirandamolina_.

CUERPO GEOMETRICO
Las matemáticas son un mundo en sí mismo. Y sirven para describir y prever fenómenos de todo tipo. Y también para modelar distintas realidades. El arquitecto y artista del papel australiano Horst Kiechle ha construido un torso geométrico de papel con el corazón, pulmones, intestinos, riñones, páncreas, estómago y todos los órganos. Cada pieza está diseñada por ordenador con triángulos y cuadriláteros numerados que se van montando y pegando hasta formar este auténtico cuerpo geométrico. Para no perderse las fotos de esta archisculpture ni la entrevista con el autor.
Entrada para la Edición 4.12310 del Carnaval de Matemáticas en el blog de @_mirandamolina_.

ARITMÉTICA MODULAR
Si son las 2 y pasan 12 horas vuelven a ser las 2. O si son las 6 y pasan 7 horas es la 1, con lo que
6 + 7 = 1. Es la aritmética modular o aritmética del reloj que presentó Johann Carl Friedrich Gauss en su obra maestra Disquisitiones Arithmeticae en 1801, estableciendo las bases de la Teoría de Números.
Con las horas puede hacerse cada 12 o cada 24, con minutos y segundos cada 60 y con cualquier número n, contando desde 0 hasta n-1 y volviendo a pasar siempre por los mismos números.  Son las congruencias módulo n a ≡ b (mód n), de extremada importancia en el estudio de los números primos y criptografía, en la ley de reciprocidad cuadrática y en la construcción con regla y compás del polígonos regular de 17 lados, que llevó a Gauss a hacerse matemático a los 19 años.
Entrada para la Edición 4.12310 del Carnaval de Matemáticas en el blog de @_mirandamolina_.

FUNCION EN ESCALERA
Hay funciones discontínuas y de tramos horizontales que se representan como estos escalones azules. A nadie le extraña que se llamen función en escalera. Foto Gargaro.
Entrada para la Edición 4.12310 del Carnaval de Matemáticas en el blog de @_mirandamolina_.

PERÍMETRO
La Torre CN de Toronto ofrece a los turistas un aventurado paseo por los bordes de uno de los edificios más altos del mundo, 116 plantas = 356 metros = 1.168 pies. Un paseo perimetral para quien no le dé vértigo la geometría. Foto CNTower.

POLIEDROS
La belleza de las formas y la fascinación de la geometría, tanto en los poliedros naturales, como en los artesanales.

MOEBIUS A LO GRANDE
La cinta de Moebius causa asombro y fascinación porque muestra claramente una figura en el espacio que tiene una sola cara. Y no sólo en geometría sino también en el arte como muestra la foto de esta escultura del diseñador Max Bill.

 

HACIENDO TESELACIONES
Nos gustan las regularidades, las formas repetidas, los patrones, lo que se estudia en matemáticas como movimientos, transformaciones y teselaciones. Por la armonía de las formas, la lógica del desarrollo y la belleza del resultado son una práctica ideal para hacer con hijos y alumnos diseñando los patrones sobre un papel cuadriculado. Lo parasarán bien. Pero, eso sí, no les digas que son matemáticas.
Foto del post How to make a chevron pattern on stairs, donde explican e ilustran cómo hacer la plantilla y decorar una escalera.
Entrada para la Edición 4.1231 del Carnaval de Matemáticas en el blog i-matemáticas.com de JGM.

RECTAS EN EL ESPACIO
La geometría analítica expresa rectas con ecuaciones, con lo que se desarrollan de otra manera ideas y teoremas, se facilitan los cálculos y se obtienen precisos resultados. No importa la dimensión, con ecuaciones todo funciona de manera similar, con 2 variables en 2D o 3 variables en 3D . Es tanta la potencia del método que nos olvidamos de visualizar las cosas, por lo que no viene mal esta foto de Taiyo Onorato y Nico Krebs de su libro The Great Unreal.