Una mañana, exactamente al amanecer, un monje budista emprendió la ascensión de una elevada montaña. El sendero que utilizó, de no más de un metro de ancho, daba vueltas y revueltas en torno a la montaña, hasta un resplandeciente cerro en la cima. El monje fue subiendo con velocidad variable, deteniéndose muchas veces a descansar y a comer frutos secos que llevaba consigo. Alcanzó el templo poco antes de la puesta del sol. Tras varios días de ayuno y meditación, emprendió el viaje de regreso a lo largo del mismo sendero, partiendo al amanecer, caminando igualmente con velocidad variable y haciendo muchas pausas a lo largo del camino. Su velocidad media en el descenso fue, como era de esperar mayor que en el ascenso. Demostrar que hay un punto del camino por el que el monje pasó en ambos viajes exactamente a la misma hora del día.
Un problema clásico y que sorprende a primera vista. Esta versión del enunciado está tomada del club mensa, donde puede verse la solución clásica. Y hay otra más imaginativa.
Por cierto, buscando el problema del monje budista en google se entera uno de que más de la mitad de los monjes budistas son obesos. Ese debe ser su problema. Y es que a partir de las matemáticas se aprende de todo. Foto Petri Damstén.
Esta entrada participa en la Edición 4.1 del Carnaval de Matemáticas cuyo anfitrión es Tito Eliatron Dixit.
Archivo de la categoría: cálculo
Jean-Baptiste Joseph Fourier estudió hacia 1810 las que hoy llamamos en su honor series de Fourier, sumas infinitas que se recuerdan diciendo acósenos y bésenos. El matemático @LucasVB, especialista en visualizaciones interactivas de física y mates, nos presenta un Juego de Fourier, para manejar hasta 8 frecuencias, y su compañero @matthen2 demuestra de manera muy animada que toda función periódica es suma de series sinusoidales. Un gran resultado básico en el análisis armónico, con aplicaciones en ingeniería, matemática abstracta, análisis vibratorio, acústica, óptica, imágenes y señales, datos y telecomunicaciones. Un ejemplo de su uso se muestra en el esquemat de hoy. Foto Jumrus Leartcharoen.
Esta entrada participa en la Edición 4.1 del Carnaval de Matemáticas cuyo anfitrión es Tito Eliatron Dixit.
Para seguir la tendencia, llegar al límite o acercarte a tus asíntotas. Foto Tristan Shu.
El jugador más alto del mundo sería el máximo absoluto, el que se conforma con ser el más alto de su equipo, su barrio, su liga, es un máximo relativo. Y lo mismo con los mínimos. Apasionante cuestión la saber los puntos críticos de una función que se ve en la gráfica y se calcula haciendo nulas las derivadas. En la foto de 365díasdebasquet Manute, el jugador más alto de la historia de la NBA, con 2’31 m, y Tyrone, el más bajo, con 1’59 m.
Varios intervalos [a,b], contenidos cada uno en el anterior, forman una familia de intervalos encajados. Si además son cada vez “más pequeños”, es decir si el límite de su longitud tiene a cero, determinan un punto, lo que es una forma de definir los números reales. Método un tanto complicado que costó muchos años formalizar pero que dio un gran impulso al cálculo infinitesimal iniciado por Newton y Leibnitz. Foto de un anuncio de furgonetas Fiat.
Una selección de números irracionales situados en un reloj que, naturalmente no marca las horas ‘exactas’ sino otras muy especiales, con infinitos decimales. Por ejemplo el nº e está un poco antes del 3 y el nº π un poco después. Por cierto que no se llaman números irracionales porque no sean razonables, se razonan muy bien, sino porque no se pueden poner como una razón (n/m). Los pitagóricos les llamaron incomensurables, porque rompían sus ideas sobre la medida de los números, pero desde hace siglos son números bien definidos y controlados, aunque siguen siendo incómodos para los estudiantes. Foto trendencias vía @MisVoces
El cielo está lleno de mates y hoy las nubes toman forma de dos curvas, las gráficas del seno y del coseno, que son iguales, aunque desplazadas. Dedicado a @encar77 que tuitea hermosas frases entra las que encontré esta foto, vía @tocamates.
Dedicado a @raulf tuitero y fotomatfan que aportó el hermoso montaje fotográfico de Krasi Stoimenov
En 1645 Roberval estudió la curva ptéroïde (de pteron=ala y cucumion=olla rota), llamada luego logocíclica y hoy estrofoide recta, que ya tuvo una visión más natural en fotomat.
Se trata de una cúbica circular unicursal cuyas ecuaciones, gráfica y propiedades pueden verse en la enciclopedia francesa de formas matemáticas mathcurve, que abarca curvas en 2D y 3D, superficies, fractales y poliedros.
Foto de un detalle de la fuente de la Cité des Sciences de Paris con la Géode al fondo. La fuente entera es una curva más complicada.
Esta entrada participa en la edición 3.1415926535 del Carnaval de Matemáticas cuyo blog anfitrión es La Aventura de la Ciencia.
Un intervalo cerrado es que el que tiene topes, como cuando decimos que habrá becas para los jóvenes de 11 a 14 años y entran en el asunto los de 11 y los de 14. La palabra intervalo viene de inter vallum = entre vallas, entre muros de defensa, como apunta @Innella_M_A, siempre apoyando y divulgando fotomat .Foto Jase Wells.